Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.
نویسنده
چکیده مقاله:
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been stated for these (bi-) module categories. However, the units and counits of adjunctions are not trivial. For a right comodule algebra A over a quasi-Hopf algebra H, the bimodule category _AM_A need not be monoidal and a tensor endofunctors of this category can not be defined trivially. But the coaction of H on A induces an action of (bi-) module category of H on the (bi-) module category of the comodule algebra A. In this paper, using the action of the monoidal category _HM_H on the bimodule category _AM_A, we introduce suitable versions of tensor and Hom-endofunctors of _AM_A and generalize varieties the Hom-tensor adjunctions for (bi-) module categories of comodule algebras over a quasi-Hopf algebra H and in any case, we compute the unit and counit of adjunction explicitely.
منابع مشابه
Cyclic Homology of Hopf Comodule Algebras and Hopf Module Coalgebras
In this paper we construct a cylindrical module A♮H for an Hcomodule algebra A, where the antipode of the Hopf algebra H is bijective. We show that the cyclic module associated to the diagonal of A♮H is isomorphic with the cyclic module of the crossed product algebra A ⋊H. This enables us to derive a spectral sequence for the cyclic homology of the crossed product algebra. We also construct a c...
متن کاملHom-tensor Relations for Two-sided Hopf Modules over Quasi-hopf Algebras
For a Hopf algebra H over a commutative ring k, the category MH of right Hopf modules is equivalent to the category Mk of k-modules, that is, the comparison functor −⊗k H : Mk → MH is an equivalence (Fundamental theorem of Hopf modules). This was proved by Larson and Sweedler via the notion of coinvariants McoH for any M ∈ MH . The coinvariants functor (−) coH : MH → Mk is right adjoint to the ...
متن کاملHom-bialgebras and Comodule Algebras
We construct a Hom-bialgebra M(2) representing the functor of 2 × 2-matrices on Hom-associative algebras. We also construct a Hom-algebra analogue of the affine plane and show that it is a comodule Hom-algebra over M(2) in a suitable sense.
متن کاملHom-lie Admissible Hom-coalgebras and Hom-hopf Algebras
The aim of this paper is to generalize the concept of Lie-admissible coalgebra introduced in [2] to Hom-coalgebras and to introduce Hom-Hopf algebras with some properties. These structures are based on the Hom-algebra structures introduced in [12].
متن کاملModule Hom-algebras
We study a twisted version of module algebras called module Hom-algebras. It is shown that module algebras deform into module Hom-algebras via endomorphisms. As an example, we construct certain q-deformations of the usual sl(2)-action on the affine plane.
متن کاملModule Categories over Pointed Hopf Algebras
We develop some techniques for studying exact module categories over some families of pointed finite-dimensional Hopf algebras. As an application we classify exact module categories over the tensor category of representations of the small quantum groups uq(sl2).
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 3
صفحات 0- 0
تاریخ انتشار 2020-11
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023